
A SPARQL to Cypher Transpiler: Proposal and Initial Results
Lakshya A Agrawal∗
lakshya18242@iiitd.ac.in

IIIT-Delhi
India

Nikunj Singhal∗
nikunj18249@iiitd.ac.in

IIIT-Delhi
India

Raghava Mutharaju
raghava.mutharaju@iiitd.ac.in

IIIT-Delhi
India

ACM Reference Format:
Lakshya A Agrawal, Nikunj Singhal, and Raghava Mutharaju. 2022. A
SPARQL to Cypher Transpiler: Proposal and Initial Results. In 5th Joint
International Conference on Data Science & Management of Data (9th ACM
IKDD CODS and 27th COMAD) (CODS-COMAD 2022), January 8–10, 2022,
Bangalore, India. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3493700.3493757

1 INTRODUCTION
A Knowledge Graph [3] is defined as a graph of data intended to
capture the knowledge of the real world. The nodes in the graph rep-
resent the entities of interest and the edges capture the relationship
between the entities. Therefore, a Knowledge Graph structures the
information (knowledge) so that it is connected and makes it easy
to query information linked to one another. Knowledge Graphs are
used in several applications such as chatbots, question answering
systems and recommendation systems across multiple domains.
The two most common representations for Knowledge Graphs are
triples (RDF Graphs) and Property Graphs (PG), with each having
different strengths, environments and usage scenarios. RDF and
its corresponding query language, SPARQL, are W3C standards
that support reasoning. Property Graphs, on the other hand, offer
greater flexibility in representing the data in the form of graphs.
Depending on the PG management system, there are several op-
tions to query PGs such as Gremlin, Cypher and GQL, with Cypher
being one of the popular query languages of choice.

Many commercial and open-source applications built on either
RDF or Property Graphs cannot leverage the data from one another
due to the lack of interoperability. There is a need to interoperate
between these two Worlds so that it is easy to switch with a change
in the environment or the usage scenario. The ability to use SPARQL
or Cypher to query Property Graphs or RDF Graphs, respectively,
enables the applications to easily interoperate between the two
Worlds. Although there are techniques to convert RDF Graphs to
Property Graphs [2], there are no existing tools to convert SPARQL
to Cypher. In order to fill this gap, we propose a transpiler (a source
to source compiler) to convert SPARQL queries to Cypher queries.
This will allow the data and the queries to be easily ported from an
RDF graph structure to a PG. We present a three-phase approach
for SPARQL to Cypher transpiler development. We also discuss
∗Lakshya A Agrawal and Nikunj Singhal contributed equally to this work and both of
them are undergraduates.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CODS-COMAD 2022, January 8–10, 2022, Bangalore, India
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8582-4/22/01.
https://doi.org/10.1145/3493700.3493757

an extendable testbench that supports automatic testing of the
SPARQL to Cypher converter. We establish the dependence of the
query transpilation on the scheme used for mapping RDF Graphs to
Property Graphs. The source code is available under an open-source
license at https://github.com/kracr/sparql-cypher-transpiler.

2 APPROACH
The primary use case that we consider for the transpiler is that of
enabling interoperability between RDF graph and PG by facilitating
a query conversion mechanism. So we assume the presence of an
RDF graph and its equivalent PG. Consider an RDF graph, Gr , and
a set of SPARQL queries,Qr , that work onGr . In order to port them
to a PG store, Gr should be mapped to its equivalent PG, Gp , and
Qr should be converted to Cypher queries, Qp . There are multiple
equivalent graph conversions from RDF to PG. The process of
converting a SPARQL query to its equivalent Cypher query depends
on the scheme used for converting an RDFGraph to PG as illustrated
in Figure 1. Taking this into account, we propose a three-phase
approach for developing a SPARQL to Cypher transpiler.

Figure 1: RDF Graph and its conversion to PG. The Cypher
translation of the SPARQL query to obtain the same result
in the example - “John Doe" - is dependent on the graph con-
version scheme.

2.1 Approach for Transpiler Development
The following are the three phases in the transpiler development.

(1) Build the SPARQL to Cypher converter with respect to a
custom-defined RDF to PG conversion scheme so as to focus
on the query conversion and not on the graph conversion.

(2) Modify the SPARQL to Cypher transpiler in phase 1 to work
with existing RDF to PG conversion schemes used in PG-
Bench [4], and Neosemantics [1].

(3) Build a generic SPARQL to Cypher transpiler that does not
assume any particular graph conversion scheme and instead
takes the graph conversion scheme as an input parameter
in the query conversion process, making the transpiler inde-
pendent of the graph conversion scheme.

https://orcid.org/0000-0003-0409-8212
https://orcid.org/0000-0002-5433-6082
https://orcid.org/0000-0003-2421-3935
https://doi.org/10.1145/3493700.3493757
https://doi.org/10.1145/3493700.3493757
https://doi.org/10.1145/3493700.3493757
https://github.com/kracr/sparql-cypher-transpiler


CODS-COMAD 2022, January 8–10, 2022, Bangalore, India L. Agrawal, N. Singhal, R. Mutharaju

2.2 Testbench
We developed a testbench to test the query conversion and valid-
ity with support for changing the underlying graph conversion
schemes and hence independent of the RDF to PG conversion. The
testbench is aimed to provide fast feedback and exhaustively test
the transpiler over various datasets and language constructs. As
shown in Figure 2, each testcase in the testbench consists of a RDF
dataset and SPARQL query. The RDF Graph is converted to PG and
SPARQL to Cypher, and the results of executing the queries on their
respective datasets are then evaluated for equivalence. The RDF to
PG conversion is used to ensure the correctness of the transpiler by
evaluating the equivalence of results of the SPARQL and converted
Cypher queries.

Figure 2: Testbench for our SPARQL to Cypher transpiler

2.3 RDF to PG Conversion
The custom RDF to PG converter for phase one iterates over each
triple in an RDF dataset and creates a node for the subject and the
object in the triple. The predicate in the triple becomes the edge
label in the PG. A MERGE query corresponding to the subject and
object of each triple is created using the visitor design pattern. The
visitor pattern is used to exhaustively cover all the RDF node types
- blank node, IRIs and literals.MERGE query in Cypher matches the
node pattern in the PG, and upon non-existence, creates it.

2.4 SPARQL to Cypher Transpiler
The first step in the conversion is to get the corresponding algebra
for a given SPARQL query. We make use of Apache Jena1 to obtain
the SPARQL algebra. The Cypher query is built incrementally by
using the visitor design pattern to exhaustively visit all the SPARQL
algebra nodes (Figure 3). Currently, the following types of node
visits are supported.

(1) Projection (Jena.OpProject): In SPARQL algebra, projections
represent variable selection. In Cypher, the corresponding
selections are performed through a return clause, which
returns a string representation for the IRI associated with
each node/edge.

(2) Basic Graph Pattern (Jena.OpBGP): BGPs are converted us-
ing a node visitor along with a visitor for named and blank
variables in SPARQL queries. Each variable in a SPARQL
query must be converted to a variable in Cypher, which
should refer to the PG entity corresponding to the RDF en-
tity. Blank variables and named variables are mapped to

1https://jena.apache.org/documentation/query/algebra.html

Figure 3: Converting a SPARQL query to its equivalent
Cypher query

legal Cypher names, with a check for name collision and the
mapping is retained throughout the conversion.

3 EVALUATION
The transpiler is evaluated on the testbench. The RDF graph and
the SPARQL query sources are as follows.

• SP2Bench [5]:We generate 100 triples and use the 17 SPARQL
queries that are part of the benchmark.

• W3C SPARQL Recommendation Document2: We make use
of 5 RDF Graphs and 10 queries from this document.

The converted queries for all supported query types return the
same results as the corresponding SPARQL query and hence pass
the test.

4 CONCLUSION AND FUTUREWORK
Going forward, we plan to work on the remaining phases of our pro-
posed three-phase approach. For the third phase, a mechanism to
capture the RDF Graph to PG conversion scheme needs to be inves-
tigated. We plan to develop a simple mapping language to capture
the conversion. The testbench will be extended to support query
performance benchmarking, which will further be used to work
on query optimizations. We also plan to work on formal algebraic
arguments to prove the correctness of the query conversion process.
This would require further study of the algebraic formalization of
Cypher.

Acknowledgement. This work is partially supported by the
Infosys Centre for Artificial Intelligence (CAI), IIIT-Delhi, India.

REFERENCES
[1] Jesús Barrasa and Adam Cowley. 2021. neosemantics (n10s): Neo4j RDF Semantics

toolkit - Neo4j Labs. https://neo4j.com/labs/neosemantics/
[2] Olaf Hartig. 2014. Reconciliation of RDF* and Property Graphs. CoRR abs/1409.3288

(2014), 1–18. arXiv:1409.3288 http://arxiv.org/abs/1409.3288
[3] Aidan Hogan, Eva Blomqvist, Michael Cochez, and et al. 2021. Knowledge Graphs.

Comput. Surveys 54, 4 (Jul 2021), 1–37. https://doi.org/10.1145/3447772
[4] Meenakshi Maindola and Raghava Mutharaju. 2020. PGBench: A Property Graph

Benchmark for Knowledge Graphs. Master’s thesis. Indraprastha Institute of Infor-
mation Technology, Delhi.

[5] Michael Schmidt, Thomas Schallhorn, Georg Lausen, and Christoph Pinkel. 2009.
SP2Bench: A SPARQL Performance Benchmark. In 2009 IEEE 25th International
Conference on Data Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg,
222 – 233. https://doi.org/10.1109/ICDE.2009.28

2https://www.w3.org/TR/sparql11-query/

https://jena.apache.org/documentation/query/algebra.html
https://neo4j.com/labs/neosemantics/
https://arxiv.org/abs/1409.3288
http://arxiv.org/abs/1409.3288
https://doi.org/10.1145/3447772
https://doi.org/10.1109/ICDE.2009.28
https://www.w3.org/TR/sparql11-query/

	1 Introduction
	2 Approach
	2.1 Approach for Transpiler Development
	2.2 Testbench
	2.3 RDF to PG Conversion
	2.4 SPARQL to Cypher Transpiler

	3 Evaluation
	4 Conclusion and Future Work
	References

